
Sampling-based decomposition 

algorithms for arbitrary tensor networks

Osman Malik
Applied Mathematics & Computational Research Division

Berkeley Lab

Tensor Network Reading Group  ·  30 January 2024



Our focus: Decomposition of large tensors

Example: Analyzing internet traffic

• Collected by Center for Applied Internet Data Analysis (CAIDA) at UCSD [Kepner et al., IEEE 

HPEC, 2021]

• During 2019 and 2020 over 40,000,000,000,000 (40 trillion!) unique packets were collected

• Can be represented at 3-way tensor with entry 𝑠, 𝑑, 𝑡 indicate the number of packets sent 

from source 𝑠 to destination 𝑑 at time 𝑡

• We look at a small subtensor with 6.9 billion nonzeros and size

3.6 m × 11 m × 54 k in [Bharadwaj et al., preprint, 2022]

• Full dataset stored on magnetic tape 

⇒ Expensive to look at the dataset
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Graphical tensor network notation

• Graphical notation:
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Graphical representations

of decompositions…
…and their mathematical formulations

scalar vector

matrix 4-way 

tensor

Basic building blocks



Some other tensor decompositions
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(a) CP Decomposition: 𝑋𝑖𝑗𝑘𝑙 = σ𝑟=1
𝑅 𝜆𝑟  𝐴𝑖𝑟 𝐵𝑗𝑟 𝐶𝑘𝑟 𝐷𝑙𝑟

(b) Tensor ring decomposition: 𝑋𝑖𝑗𝑘𝑙 = σ𝑟𝑠𝑡𝑢 𝐴𝑢𝑖𝑟𝐵𝑟𝑗𝑠𝐶𝑠𝑘𝑡𝐷𝑡𝑙𝑢

Diagonal tensor



Alternating least squares (ALS) for tensor fitting
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at a time

→ A linear least squares problem
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ALS works for any tensor network

• Always results in linear least squares problem with structured design matrix

• Other options available (e.g., gradient descent), 

but ALS is widespread
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−argmin
F

2 Some 

algebra...

−argmin
F

2

Matrix rows (pointing left)

Matrix columns (pointing right)

Design matrix:

𝑀 =



Sampling for overdetermined least squares

• Trouble for large tensors:

– If data tensor is 𝑁-way with each dimension 𝐼 (i.e., 𝐼 × ⋯ × 𝐼), then 𝑀 has up to 𝐼𝑁−1 rows.

– Cost of solving least squares problem scales at least like 𝐼𝑁−1

• Popular idea from Randomized Numerical Linear Algebra (RandNLA): Randomly sample 

some of the equations!
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𝑋 𝑀

𝐴

−argmin
𝐴

𝑆𝑋 𝑆𝑀

𝐴−argmin
𝐴



Leverage score sampling distribution

• Let 𝑈Σ𝑉⊤ = 𝑀 be thin SVD for 𝑀.

• Draw row 𝑖 with probability 𝑝𝑖 = Τ𝑈𝑖: 2
2 rank 𝑀 .

• Sampling according to 𝑝𝑖 𝑖 with replacement results in strong guarantees [Drineas et al., 2006, 

2008, 2011; Larsen & Kolda, 2022].
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Guarantees for leverage score sampling

• Let 𝑈Σ𝑉⊤ = 𝑀 be thin SVD for 𝑀.

• Define a distribution on the rows of 𝑀 via 𝑝𝑖 =
𝑈𝑖: 2

2

rank 𝑀
.

• If rows are sampled iid according to 𝑝𝑖 𝑖, then with probability at least 1 − 𝛿

– ሚ𝐴 = argmin𝐴 𝑆𝑋 − 𝑆𝑀𝐴 F satisfies

𝑋 − 𝑀 ሚ𝐴
F

≤ 1 + 휀 min
A

𝑋 − 𝑀𝐴 ,

– provided enough samples (which depends on 𝛿 and 휀) are drawn.

• Treating 𝛿 and 휀 as fixed, 𝑂 𝑅 log 𝑅 samples are enough where 𝑅 = rank 𝑀 .

• Upshot: Sampling can yield input sublinear per iteration cost in ALS

– (i.e., cost is 𝑜(number of entires in 𝑋)).
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Several recent works leverage sampling in ALS for 

tensor decomposition

Paper Tensor decomposition(s) Exact leverage 

score distribution?

Cheng et al. [NeurIPS, 2016] CP Approximate

Larsen & Kolda [SIMAX 43(3), 2022] CP Approximate

M. & Becker [ICML, 2021] Tensor ring Approximate

M. [ICML, 2022] CP, Tensor ring Approximate

Fahrbach et al. [arXiv:2209.04876, 2022] Tucker (regularized) Exact

M. et al. [arXiv:2210.03828, 2022] Any tensor network decomposition Exact

Bharadwaj et al. [NeurIPS, 2023] CP Exact
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The challenge with leverage score sampling

• Recall 𝑝𝑖 =
𝑈𝑖: 2

2

rank 𝑀
, where 𝑀 = 𝑈ΣV⊤ is a thin SVD

– Computing 𝑈 is as expensive as solving linear system (e.g., 𝐼𝑁−1𝑅2 for rank-𝑅 CPD)

– Storing 𝑝𝑖 requires as many numbers as there are rows in 𝑀 (e.g., 𝐼𝑁−1)

• Want: Sample from (𝑝𝑖) while avoiding both
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Previous works use a product of simpler distributions

• Recall problem:

• Cheng et al. [NeurIPS, 2016], Larsen & Kolda [SIMAX 43(3), 2022]: Sample according to leverage 

scores of each factor matrix

15

−argmin
F

2 =
𝑀

𝑈

Σ 𝑉⊤

𝑖

3 smaller leverage 

scores distributions

𝑝𝑖1

1
, 𝑝𝑖2

2
, 𝑝𝑖3

3

Draw an index 

from each:

𝑖1 ∼ 𝑝𝑖1

1
,

𝑖2 ∼ 𝑝𝑖2

2
,

𝑖3 ∼ 𝑝𝑖3

3

Compute 

corresponding 

“big” index 

𝑖 = (𝑖1, 𝑖2, 𝑖3)

Pros:

- Cheap to compute 

smaller distributions.

- Very fast to sample.

Cons: 

- Not sampling from 

exact leverage score 

distribution.

- 𝑅𝑁 dependence in 

sampling complexity.
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Tensor ring

“Tiger 

decomposition”
[Li & Sun, ICML 2022]
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We leverage fact that 𝑴 has tensor network structure 

for efficient computation

Tensor network 

being fitted

Structure of 

design matrix 𝑀

CP

For sake of 

illustration, let’s 

assume 𝑀 is 

Rows Columns



• Recall formula: 

𝑝𝑖 ∝ 𝑈𝑖: 2
2 = 𝑒𝑖

⊤ 𝑀 𝑀⊤𝑀 +𝑀⊤ 𝑒𝑖

• Step 1: Compute 𝑀⊤𝑀:

• Can be done efficiently* via tensor contraction

• Compute pseudoinverse of Gram matrix: Φ ≔ 𝑀⊤𝑀 +. This is affordable*.

*For “reasonable” tensor networks this is typically the case. Not hard to cook up a counter-examples though.

Compute Gram matrix 𝑴⊤𝑴 and its pseudoinverse

Sampling-based decomposition algorithms for arbitrary tensor networks  ·  Osman Malik (oamalik@lbl.gov)  ·  Berkeley Lab 17

𝑀⊤𝑀

=
𝑀

𝑈

Σ 𝑉⊤

𝑖



Sample rows by sequentially sampling subindices

• Sampling row 𝑖 ⇔ sampling subindices (𝑖1, 𝑖2, 𝑖3)

• Strategy: 

– Sample 𝑖1

– Sample 𝑖2 conditionally on realization of 𝑖1

– Sample 𝑖3 conditionally on realization of 𝑖1, 𝑖2
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𝑖1

𝑖2

𝑖3



• Recall formula: 

𝑝(𝑖1,𝑖2,𝑖3) = 𝑝𝑖 ∝ 𝑈𝑖: 2
2 = 𝑒𝑖

⊤ 𝑀Φ𝑀⊤ 𝑒𝑖

• Distribution for 𝑖1 is: Pr 𝑖1 = σ𝑖2
σ𝑖3

𝑝(𝑖1,𝑖2,𝑖3)

• Can be computed efficiently via contraction:

• Sample 𝑖1 according to Pr 𝑖1 𝑖1

Sampling first index 𝒊𝟏
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𝑀Φ𝑀⊤ =

Now 𝐵(1) has probabilities 

along diagonal:

Pr 𝑖1 = 𝐵𝑖1𝑖1

1
 B𝐵(1)



Sampling subsequent indices 𝒊𝟐, … , 𝒊𝑵

• Distribution for 𝑖2 conditionally on 𝑖1 is: Pr 𝑖2 | 𝑖1 = σ𝑖3
𝑝(𝑖1,𝑖2,𝑖3)

• Can be computed efficiently via contraction:

• Finally, the distribution for 𝑖3 conditionally on 𝑖1, 𝑖2 is Pr 𝑖3 𝑖1, 𝑖2) = 𝑝(𝑖1,𝑖2,𝑖3)

• This directly generalizes to more indices and other tensor formats
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Now 𝐵(2) has probabilities 

along diagonal:

Pr 𝑖2 ∣ 𝑖1 = 𝐵𝑖2𝑖2

2
 𝐵(2)



Improvements to computational complexity for CP 

decomposition

Paper Method Complexity*

E.g., Kolda & Bader [SIREV 51(3), 2009] CP-ALS #it ⋅ 𝑁 𝑁 + 𝐼 𝐼𝑁−1𝑅

Cheng et al. [NeurIPS, 2016] SPALS 𝐼𝑁 + #it ⋅ 𝑁 𝑁 + 1 𝑅𝑁+1

Larsen & Kolda [SIMAX 43(3), 2022] CP-ARLS-LEV #it ⋅ 𝑁 𝑅 + 𝐼 𝑅𝑁

Malik [ICML, 2022] CP-ALS-ES #it ⋅ 𝑁2𝑅3(𝑅 + 𝑁𝐼)

Malik et al. [arXiv:2210.03828, 2022] TNS-CP #it ⋅ 𝑁3𝐼𝑅3

Bharadwaj et al. [NeurIPS, 2023] STS-CP #it ⋅ 𝑁2𝑅3 log 𝐼 + 𝑁𝐼𝑅2
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*Leading order complexity. Ignores log factors and treats accuracy (휀) and failure probability (𝛿) as 

constants. Number of iterations #it may differ between methods.

Computing rank 𝑅 CP decomposition of an 𝑁-way tensor 𝑋 of size 𝐼 × ⋯ × 𝐼
#it is number of ALS iterations



Improvements to computational complexity for tensor 

ring decomposition
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Paper Method Complexity*

Zhao et al. [arXiv:1606.05535] TR-ALS #it ⋅ 𝑁𝐼𝑁𝑅2

Yuan et al. [ICASSP, 2019] rTR-ALS 𝑁𝐼𝑁𝐾 + #it ⋅ 𝑁𝐾𝑁𝑅2

Zhao et al. [arXiv:1606.05535] TR-SVD 𝐼𝑁+1 + 𝐼𝑁𝑅3

Ahmadi-Asl et al. [Mach learn: sci technol, 2020] TR-SVD-Rand 𝐼𝑁𝑅2

Malik & Becker [ICML, 2021] TR-ALS-Sampled #it ⋅ 𝑁𝐼𝑅2𝑁+2

Malik [ICML, 2022] TR-ALS-ES #it ⋅ 𝑁3𝑅8(𝑅 + 𝐼)

Malik et al. [arXiv:2210.03828, 2022] TNS-TR #it ⋅ 𝑁3𝐼𝑅8

*Leading order complexity. Ignores log factors and treats accuracy (휀) and failure probability (𝛿) as 

constants. Number of iterations #it may differ between methods.

Computing rank (𝑅, … , 𝑅) tensor ring decomposition of an 𝑁-way tensor 𝑋 of size 𝐼 × ⋯ × 𝐼
#it is number of ALS iterations
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Future directions

• Please contact me with questions:

– Osman Malik

– oamalik@lbl.gov

– https://osmanmalik.github.io/

Thank you!

Preprint at:
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Vivek Bharadwaj

UC Berkeley

Riley Murray

Sandia National Labs

• Expand to other decompositions

• High-performance codes (shared or distributed memory)

• Recent tensor collaborators:

Beheshteh Rakhshan

Mila

Guillaume Rabusseau

Mila

Laura Grigori

INRIA

Aydın Buluç

LBNL and UC Berkeley
James Demmel

UC Berkeley

mailto:oamalik@lbl.gov
https://osmanmalik.github.io/
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