

Sampling-based decomposition algorithms for arbitrary tensor networks

Osman Malik

Applied Mathematics & Computational Research Division Berkeley Lab

Tensor Network Reading Group · 30 January 2024

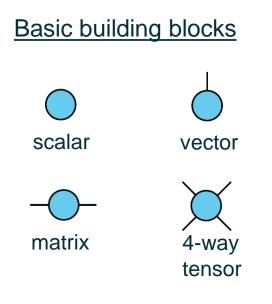
Our focus: Decomposition of large tensors

Example: Analyzing internet traffic

- Collected by Center for Applied Internet Data Analysis (CAIDA) at UCSD [Kepner et al., IEEE HPEC, 2021]
- During 2019 and 2020 over 40,000,000,000,000 (40 trillion!) unique packets were collected
- Can be represented at 3-way tensor with entry (*s*, *d*, *t*) indicate the number of packets sent from source *s* to destination *d* at time *t*
- We look at a small subtensor with 6.9 billion nonzeros and size $3.6 \text{ m} \times 11 \text{ m} \times 54 \text{ k}$ in [Bharadwaj et al., preprint, 2022]
- Full dataset stored on magnetic tape
 ⇒ Expensive to look at the dataset

Graphical tensor network notation

• Graphical notation:



Graphical representations of decompositions... (a) (a) = c(b) $\frac{i}{A} = c$ (c) $\frac{i}{A} \frac{j}{x} = \frac{i}{y}$ (c) $\frac{i}{a} \frac{j}{b} \frac{k}{k} = \frac{i}{c} \frac{c}{k}$

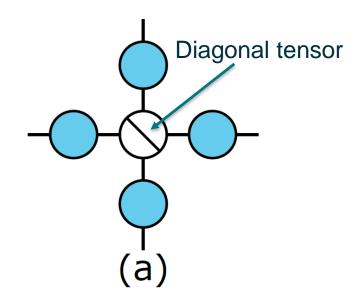
...and their mathematical formulations

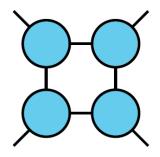
(a)
$$\sum_{i} A_{ii} = \operatorname{trace}(A) = c,$$

(b) $\sum_{j} A_{ij} x_{j} = y_{i},$
(c) $\sum_{j} A_{ij} B_{jk} = C_{ik},$
(d) $\sum_{\ell mn} \chi_{\ell mn} A_{i\ell} B_{jm} C_{kn} = \mathcal{Y}_{ijk}.$

(d)

Some other tensor decompositions

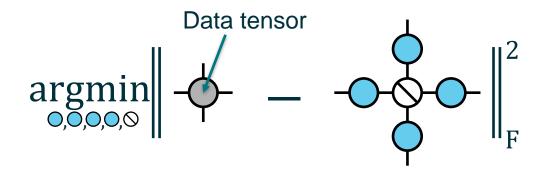




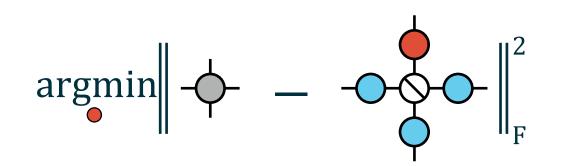
(b)

(a) CP Decomposition: $X_{ijkl} = \sum_{r=1}^{R} \lambda_r A_{ir} B_{jr} C_{kr} D_{lr}$

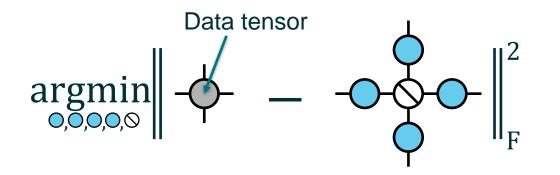
(b) Tensor ring decomposition: $X_{ijkl} = \sum_{rstu} A_{uir} B_{rjs} C_{skt} D_{tlu}$



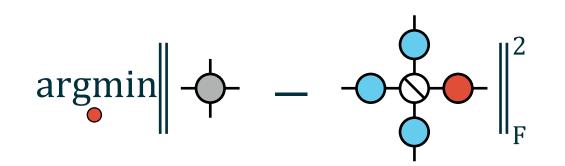
Difficult, non-convex problem!



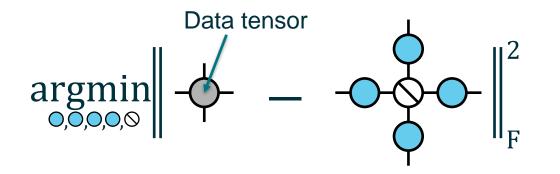
ALS instead updates one thing at a time



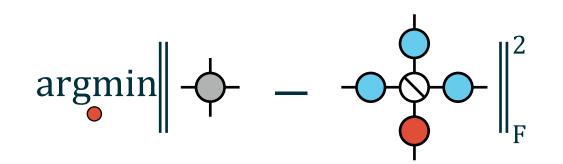
Difficult, non-convex problem!



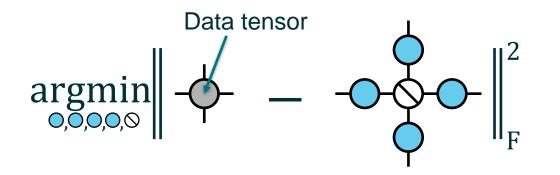
ALS instead updates one thing at a time



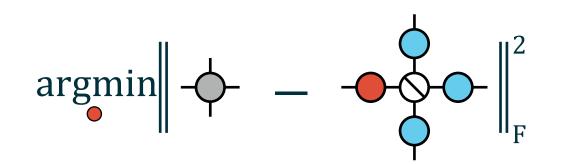
Difficult, non-convex problem!



ALS instead updates one thing at a time



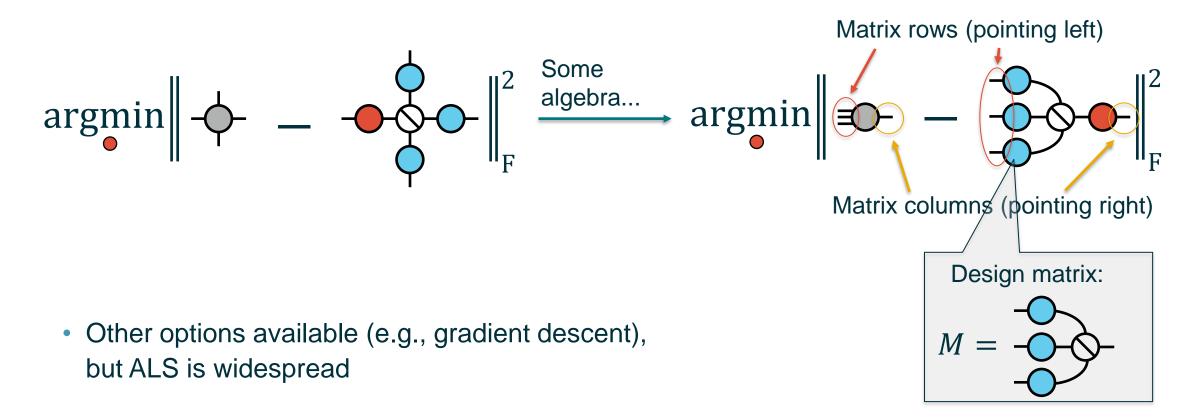
Difficult, non-convex problem!



ALS instead updates one thing at a time

ALS works for any tensor network

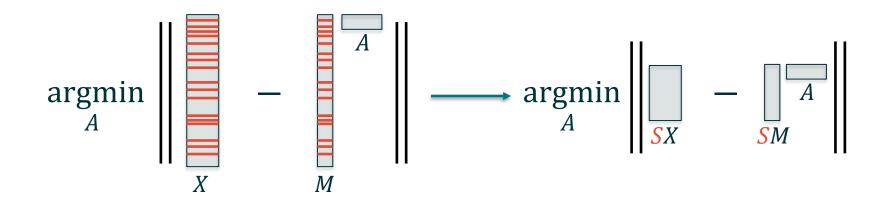
• Always results in linear least squares problem with structured design matrix



Sampling for overdetermined least squares

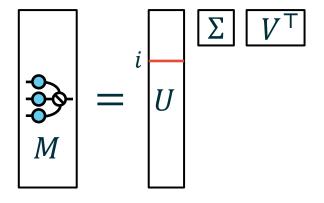
• Trouble for large tensors:

- If data tensor is N-way with each dimension I (i.e., $I \times \cdots \times I$), then M has up to I^{N-1} rows.
- Cost of solving least squares problem scales at least like I^{N-1}
- Popular idea from Randomized Numerical Linear Algebra (RandNLA): Randomly sample some of the equations!



Leverage score sampling distribution

• Let $U\Sigma V^{\top} = M$ be thin SVD for *M*.



- Draw row *i* with probability $p_i = ||U_{i:}||_2^2 / \operatorname{rank}(M)$.
- Sampling according to $(p_i)_i$ with replacement results in strong guarantees [Drineas et al., 2006, 2008, 2011; Larsen & Kolda, 2022].

Guarantees for leverage score sampling

- Let $U\Sigma V^{\top} = M$ be thin SVD for *M*.
- Define a distribution on the rows of *M* via $p_i = \frac{\|U_{i:}\|_2^2}{\operatorname{rank}(M)}$.
- If rows are sampled iid according to $(p_i)_i$, then with probability at least 1δ
 - $-\tilde{A} = \operatorname{argmin}_{A} \|SX SMA\|_{F}$ satisfies

$$\left\|X - M\tilde{A}\right\|_{F} \le (1 + \varepsilon) \min_{A} \|X - MA\|,$$

- provided enough samples (which depends on δ and ε) are drawn.
- Treating δ and ε as fixed, $O(R \log(R))$ samples are enough where $R = \operatorname{rank}(M)$.
- Upshot: Sampling can yield input sublinear per iteration cost in ALS
 - (i.e., cost is o(number of entires in X)).

Several recent works leverage sampling in ALS for tensor decomposition

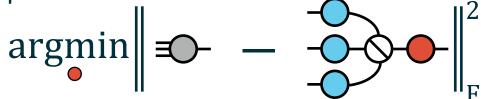
	Paper	Tensor decomposition(s)		Exact leverage score distribution?	
	Cheng et al. [NeurIPS, 2016]	СР		Approximate	
	Larsen & Kolda [SIMAX 43(3), 2022]	CP		Approximate	
	M. & Becker [ICML, 2021]	Tensor ring		Approximate	
هم	M. [ICML, 2022]	CP, Tensor ring		Approximate	
	Fahrbach et al. [arXiv:2209.04876, 2022]	Tucker (regularized)		Exact	
م	M. et al. [arXiv:2210.03828, 2022]	Any tensor network decomposition		Exact	
	Bharadwaj et al. [NeurIPS, 2023] Next week!	СР		Exact	
λ	-This talk!				

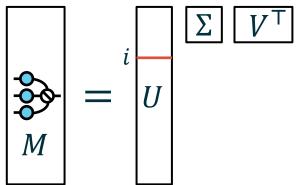
The challenge with leverage score sampling

- Recall $p_i = \frac{\|U_{i:}\|_2^2}{\operatorname{rank}(M)}$, where $M = U\Sigma V^T$ is a thin SVD
 - <u>Computing</u> U is as expensive as solving linear system (e.g., $I^{N-1}R^2$ for rank-R CPD)
 - Storing (p_i) requires as many numbers as there are rows in M (e.g., I^{N-1})
- Want: Sample from (p_i) while <u>avoiding both</u>

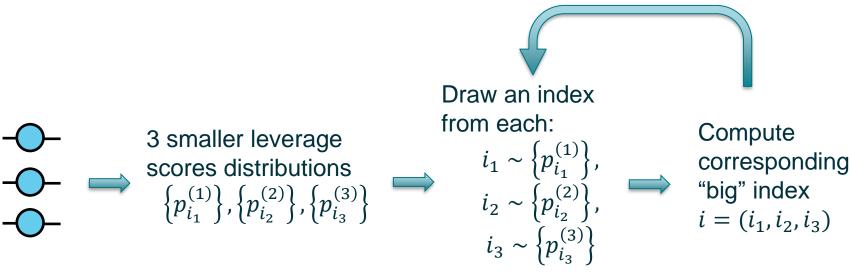
Previous works use a product of simpler distributions

Recall problem:





Cheng et al. [NeurIPS, 2016], Larsen & Kolda [SIMAX 43(3), 2022]: Sample according to leverage scores of each factor matrix

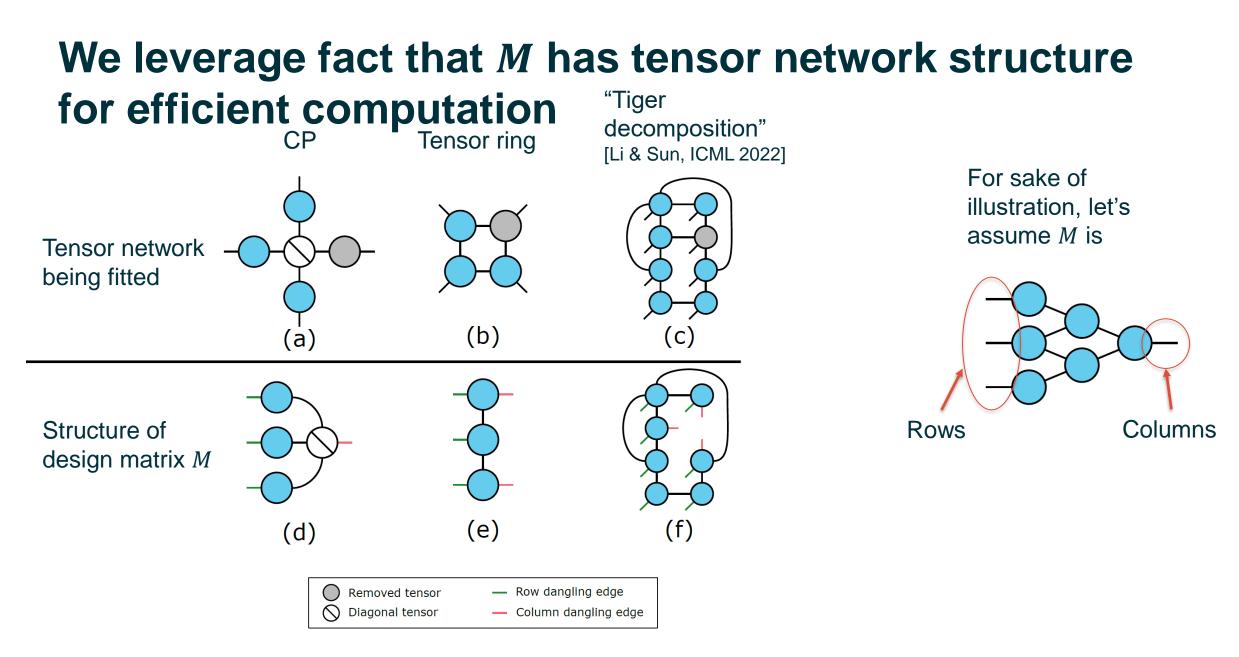


Pros:

- Cheap to compute smaller distributions.
- Very fast to sample.

Cons:

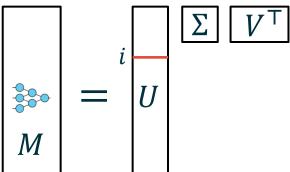
- Not sampling from exact leverage score distribution.
- R^N dependence in sampling complexity.



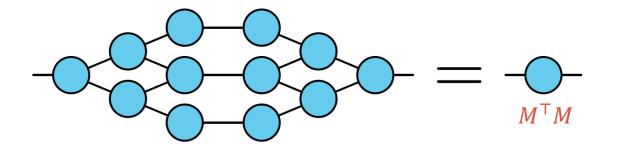
Compute Gram matrix $M^{\top}M$ and its pseudoinverse

• Recall formula:

$$p_i \propto \|U_{i:}\|_2^2 = e_i^\top M(M^\top M)^+ M^\top e_i$$



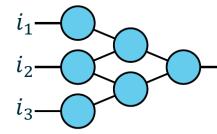
• Step 1: Compute $M^{\top}M$:



- Can be done efficiently* via tensor contraction
- Compute pseudoinverse of Gram matrix: $\Phi \coloneqq (M^{\top}M)^+$. This is affordable*.
 - *For "reasonable" tensor networks this is typically the case. Not hard to cook up a counter-examples though.

Sample rows by sequentially sampling subindices

• Sampling row $i \Leftrightarrow$ sampling subindices (i_1, i_2, i_3)

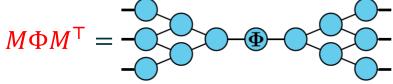


- Strategy:
 - Sample i_1
 - Sample i_2 conditionally on realization of i_1
 - Sample i_3 *conditionally* on realization of i_1 , i_2

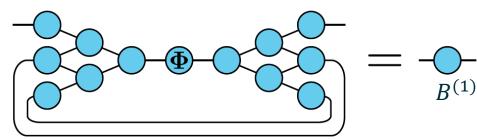
Sampling first index i_1

• Recall formula:

$$p_{(i_1,i_2,i_3)} = p_i \propto \|U_{i:}\|_2^2 = e_i^\top M \Phi M^\top e_i$$



- Distribution for i_1 is: $Pr(i_1) = \sum_{i_2} \sum_{i_3} p_{(i_1,i_2,i_3)}$
- Can be computed efficiently via contraction:

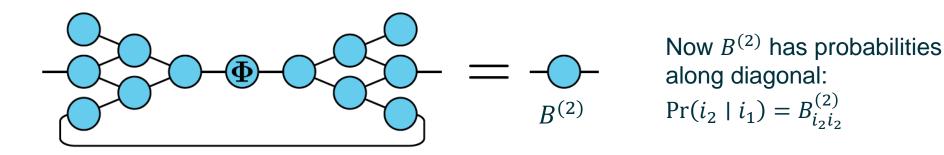


Now $B^{(1)}$ has probabilities along diagonal: $Pr(i_1) = B^{(1)}_{i_1i_1}$

• Sample i_1 according to $(Pr(i_1))_{i_1}$

Sampling subsequent indices $i_2, ..., i_N$

- Distribution for i_2 conditionally on i_1 is: $Pr(i_2 | i_1) = \sum_{i_3} p_{(i_1, i_2, i_3)}$
- Can be computed efficiently via contraction:



- Finally, the distribution for i_3 conditionally on i_1, i_2 is $Pr(i_3 | i_1, i_2) = p_{(i_1, i_2, i_3)}$
- This directly generalizes to more indices and other tensor formats

Improvements to computational complexity for CP decomposition

Computing rank *R* CP decomposition of an *N*-way tensor *X* of size $I \times \cdots \times I$ #it is number of ALS iterations

Paper	Method	Complexity*
E.g., Kolda & Bader [SIREV 51(3), 2009]	CP-ALS	$\#it \cdot N(N+I)I^{N-1}R$
Cheng et al. [NeurIPS, 2016]	SPALS	$I^N + \# \mathrm{it} \cdot N(N+1) \mathbb{R}^{N+1}$
Larsen & Kolda [SIMAX 43(3), 2022]	CP-ARLS-LEV	$\#$ it · $N(R + I)R^{N}$
Malik [ICML, 2022]	CP-ALS-ES	#it $\cdot N^2 R^3 (R + NI)$
Malik et al. [arXiv:2210.03828, 2022]	TNS-CP	#it $\cdot N^3 IR^3$
Bharadwaj et al. [NeurIPS, 2023] Next week!	STS-CP	$#it \cdot (N^2 R^3 \log I + NIR^2)$

*Leading order complexity. Ignores log factors and treats accuracy (ε) and failure probability (δ) as constants. Number of iterations #it may differ between methods.

Improvements to computational complexity for tensor ring decomposition

Computing rank (R, ..., R) tensor ring decomposition of an *N*-way tensor *X* of size $I \times \cdots \times I$ #it is number of ALS iterations

Paper	Method	Complexity*
Zhao et al. [arXiv:1606.05535]	TR-ALS	#it $\cdot NI^N R^2$
Yuan et al. [ICASSP, 2019]	rTR-ALS	$NI^NK + \#it \cdot NK^NR^2$
Zhao et al. [arXiv:1606.05535]	TR-SVD	$I^{N+1} + I^N R^3$
Ahmadi-Asl et al. [Mach learn: sci technol, 2020]	TR-SVD-Rand	$I^N R^2$
Malik & Becker [ICML, 2021]	TR-ALS-Sampled	#it $\cdot NIR^{2N+2}$
Malik [ICML, 2022]	TR-ALS-ES	$\#it \cdot N^3 R^8 (R+I)$
Malik et al. [arXiv:2210.03828, 2022]	TNS-TR	#it $\cdot N^3 IR^8$

*Leading order complexity. Ignores log factors and treats accuracy (ε) and failure probability (δ) as constants. Number of iterations #it may differ between methods.

Future directions

- Expand to other decompositions
- High-performance codes (shared or distributed memory)
- Recent tensor collaborators:

Vivek Bharadwaj UC Berkeley

Riley Murray Sandia National Labs

Beheshteh Rakhshan Mila

Guillaume Rabusseau Mila

- Please contact me with questions:
 - Osman Malik
 - <u>oamalik@lbl.gov</u>
 - https://osmanmalik.github.io/

Thank you!

Laura Grigori INRIA

Aydın Buluç LBNL and UC Berkeley

James Demmel UC Berkeley

Preprint at:

References

- S. Ahmadi-Asl, A. Cichocki, A. H. Phan, M. G. Asante-Mensah, F. Mousavi, I.
 Oseledets, and T. Tanaka. *Randomized algorithms for fast computation of low-rank tensor ring model*. Machine Learning: Science and Technology, 2020.
- V. Bharadwaj, O. A. Malik, R. Murray, A. Buluç, and J. Demmel. *Distributed-memory randomized algorithms for sparse tensor CP decomposition*. Preprint arXiv:2210.05105, 2022.
- V. Bharadwaj, O. A. Malik, R. Murray, L. Grigori, A. Buluç, J. Demmel. Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition. NeurIPS, 2023.
- D. Cheng, R. Peng, Y. Liu, and I. Perros. SPALS: Fast alternating least squares via implicit leverage scores sampling. Advances In Neural Information Processing Systems, pages 721-729, 2016.
- P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for l₂ regression and applications. ACM-SIAM Symposium on Discrete Algorithms, pages 1127-1136, 2006.
- P. Drineas, M. W. Mahoney, and S. Muthukrishnan. *Relative-error CUR matrix decompositions*. SIAM Journal on Matrix Analysis and Applications, 30(2):844-881, 2008.
- P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlos. *Faster least squares approximation*. Numerische Mathematik, 117(2):219-249, 2011.
- M. Fahrbach, T. Fu, and M. Ghadiri. *Subquadratic Kronecker regression with applications to tensor decomposition*. Preprint arXiv:2209.04876, 2022.
- J. Kepner, M. Jones, D. Andersen, et al. Spatial temporal analysis of

40,000,000,000 internet darkspace packets. IEEE HPEC, 2021.

- T. G. Kolda and B. W. Bader. *Tensor decompositions and applications*. SIAM Review, 51(3): 455-500, Aug. 2009.
- B. W. Larsen and T. G. Kolda. *Practical leverage-based sampling for low-rank tensor decomposition*. SIAM Journal on Matrix Analysis and Applications, 43(3):1488{1517, 2022.
- C. Li and Z. Sun. *Evolutionary topology search for tensor network decomposition*. International Conference on Machine Learning, volume 119, pages 5947-5957. PMLR, 2020.
- O. A. Malik. *More efficient sampling for tensor decomposition with worst-case guarantees.* International Conference on Machine Learning, volume 162, pages 14887-14917. PMLR, 2022.
- O. A. Malik, V. Bharadwaj, R. Murray. *Sampling-Based Decomposition Algorithms for Arbitrary Tensor Networks*. Preprint arXiv:2210.03828, 2022.
- O. A. Malik and S. Becker. *A sampling-based method for tensor ring decomposition*. International Conference on Machine Learning, volume 139, pages 7400-7411. PMLR, 2021.
- L. Yuan, C. Li, J. Cao, and Q. Zhao. *Randomized tensor ring decomposition and its application to large-scale data reconstruction*. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2127-2131. IEEE, 2019.
- Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. *Tensor ring decomposition*. Preprint arXiv:1606.05535, 2016.`o